Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC33

Direct product G=NxQ with N=C3 and Q=S3xC33
dρLabelID
S3xC34162S3xC3^4486,256

Semidirect products G=N:Q with N=C3 and Q=S3xC33
extensionφ:Q→Aut NdρLabelID
C3:(S3xC33) = C3:S3xC33φ: S3xC33/C34C2 ⊆ Aut C354C3:(S3xC3^3)486,257

Non-split extensions G=N.Q with N=C3 and Q=S3xC33
extensionφ:Q→Aut NdρLabelID
C3.1(S3xC33) = D9xC33φ: S3xC33/C34C2 ⊆ Aut C3162C3.1(S3xC3^3)486,220
C3.2(S3xC33) = C32xC32:C6φ: S3xC33/C34C2 ⊆ Aut C354C3.2(S3xC3^3)486,222
C3.3(S3xC33) = C32xC9:C6φ: S3xC33/C34C2 ⊆ Aut C354C3.3(S3xC3^3)486,224
C3.4(S3xC33) = S3xC32xC9central extension (φ=1)162C3.4(S3xC3^3)486,221
C3.5(S3xC33) = C3xS3xHe3central stem extension (φ=1)54C3.5(S3xC3^3)486,223
C3.6(S3xC33) = C3xS3x3- 1+2central stem extension (φ=1)54C3.6(S3xC3^3)486,225
C3.7(S3xC33) = S3xC9oHe3central stem extension (φ=1)546C3.7(S3xC3^3)486,226

׿
x
:
Z
F
o
wr
Q
<